

3.1 Synaptic transmission

Cellular Mechanisms of Brain Function

Prof. Carl Petersen

Neuron-to-neuron communication

Excitatory and inhibitory synapses

PSP

Glutamate activates postsynaptic ionotropic glutamate receptors permeable to Na⁺ and K⁺ with reversal potential ~0 mV causing an excitatory postsynaptic potential (EPSP).

GABA activates postsynaptic ionotropic GABA receptors permeable to Cl⁻ with reversal potential ~ -70 mV causing an inhibitory postsynaptic potential (IPSP).

Electron microscopy of synaptic structure

Korogod, Petersen and Knott

Cellular Mechanisms of Brain Function

ÉCOLE POLYTECHNIQU Fédérale de Lausann

Electrical synapses

Volume transmission

Dendritic release of neurotransmitters

Synaptic transmission

- Neurons communicate with each other at specialised junctions called synapses.
- Action potentials evoke the exocytosis of synaptic vesicles filled with neurotransmitters.
- The released neurotransmitters activate specific receptors driving postsynaptic potentials.