

4.5 Dendritic spines

Cellular Mechanisms of Brain Function

Prof. Carl Petersen

Dendritic spines

Excitatory synapses on dendritic spines

Aronoff & Petersen, 2007

Structure of dendritic spines

Graham Knott

Localised biochemical reactions in spines

Calcium signals can be confined to a single spine.

Spine neck limits diffusion.

Localised signalling is likely to be important for synapse specific plasticity.

Electrical resistance of spine necks

In some spines, the neck might offer high electrical resistance (~1 G Ω).

Spine V_m might differ from V_m of parent dendrite.

Regulation: Spine neck diameter ? GABAergic synapse ?

Actin filaments in spines

Actin - dendritic spines MAP2 - microtubules

Dendritic spines

- Dendrites are often decorated with a high density of spines, which are postsynaptic specialisations of excitatory glutamatergic synapses.
- Spines are localised compartments for biochemical signalling, allowing synapse specific plasticity.
- Spine growth and disappearance may be important for rewiring neuronal networks during learning.